CD133/Prominin-1-Mediated Autophagy and Glucose Uptake Beneficial for Hepatoma Cell Survival
نویسندگان
چکیده
CD133/Prominin-1 is a pentaspan transmembrane protein that has been frequently used as a biomarker for cancer stem cells, although its biological function is unclear. The aim of our study was to explore the intrinsic functions of CD133 membrane protein in hepatoma cells during autophagy, apoptosis, tumorigenesis and cell survival through expression or downregulation of CD133. In this study, CD133 was found to be dynamically released from plasma membrane into cytoplasm in both of complete medium(CM) and low glucose medium (LGM), and LGM promoted this translocation. Expression of CD133 enhanced autophagic activity in LGM, while silencing CD133 attenuated this activity in HCC LM3 and Huh-7 cells, suggesting that CD133 is associated with autophagy. Immunofluorescence and time-lapsed confocal techniques confirmed that CD133 was associated with autophagy marker, microtubule-associated protein light chain3 (LC3) and lysosome marker during the glucose starvation. We further found that Huh-7 cells with stable expression of shCD133 (Huh-7sh133) impaired the ability of cell proliferation and formation of xenograft tumors in the NOD/SCID mice. Although loss of CD133 did not affect the rates of glucose uptake in Huh-7con and Huh-7sh133 cells under the CM, Huh-7sh133 cells obviously died fast than Huh-7con cells in the LGM and decreased the rate of glucose uptake and ATP production. Furthermore, targeting CD133 by CD133mAb resulted in cell death in HepG2 cells, especially in the LGM, via inhibition of autophagic activity and increase of apoptosis. The results demonstrated that CD133 is involved in cell survival through regulation of autophagy and glucose uptake, which may be necessary for cancer stem cells to survive in tumor microenvironment.
منابع مشابه
Resistance of glioma cells to nutrient-deprived microenvironment can be enhanced by CD133-mediated autophagy
CD133 is a pentaspan transmembrane protein that can serve as a biomarker for cancer stem cells, although its biochemical mechanism remains unclear. Here we report that CD133 expression enhances glioma cell tolerance of a nutrient-deprived microenvironment. Under starvation conditions, CD133-positive cells exhibited higher survival and decreased levels of apoptosis. These changes were dependent ...
متن کاملDistinct effects of royal jelly on human endothelial cells under high glucose condition
To assess different effects of royal Jelly in protecting the human endothelial cells from high glucose level, human umbilical vein endothelial cells were exposed to various concentrations of royal jelly, from 0.625 to 10 mg/ml, at the presence of 5 and 30 mM glucose contents over a course of 72 h. In addition to cell viability assessment by conventional MTT assay, we also analyzed the feature o...
متن کاملDistinct effects of royal jelly on human endothelial cells under high glucose condition
To assess different effects of royal Jelly in protecting the human endothelial cells from high glucose level, human umbilical vein endothelial cells were exposed to various concentrations of royal jelly, from 0.625 to 10 mg/ml, at the presence of 5 and 30 mM glucose contents over a course of 72 h. In addition to cell viability assessment by conventional MTT assay, we also analyzed the feature o...
متن کاملCD133: a stem cell biomarker and beyond
Cancer stem cells (CSCs) or tumor initiating cells (TICs) contribute to tumorigenesis, metastasis, recurrence and chemoresistance. CD133, a pentaspan membrane glycoprotein, has been used as a stem cell biomarker for isolation of stem-like cells from a variety of normal and pathological tissues as well as cell lines since its discovery in 1999. Recent studies are focusing on the functionality of...
متن کاملMicroenvironment mediated alterations to metabolic pathways confer increased chemo-resistance in CD133+ tumor initiating cells
Chemoresistance in pancreatic cancer has been attributed to tumor-initiating cells (TICs), a minor sub-population of tumor cells. However, the mechanism of chemo-resistance in these cells is still unclear.In the current study, immunohistochemical analysis of LSL-KrasG12D; LSL-Trp53R172H;PdxCre (KPC) murine tumors indicated that hypoxic regions developed through tumor progression. This hypoxic "...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2013